Blow-up of solutions for a viscoelastic wave equation with m-Laplacian and delay terms

Erhan Pişkin ${ }^{1}$ and Hazal Yüksekkaya ${ }^{2}$

${ }^{1}$ Dicle University, Department of Mathematics, Diyarbakir, Turkey
${ }^{2}$ Dicle University, Department of Mathematics, Diyarbakir, Turkey
E-mail: episkin@dicle.edu.tr ${ }^{1}$, hazally.kaya@gmail.com ${ }^{2}$

Abstract

In this work, we deal with the viscoelastic wave equation with m-Laplacian and delay terms. We study blow-up of solutions for positive initial energy under suitable conditions.

2000 Mathematics Subject Classification. 35B44. 93D15, 35L55.
Keywords. blow up, delay term, m-Laplacian.

1 Introduction

In this part, we study the viscoelastic wave equation with m-Laplacian and delay terms

$$
\begin{cases}\left|u_{t}\right|^{\rho} u_{t t}-\Delta u-\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)+\int_{0}^{t} g(t-s) \Delta u(s) d s & \tag{1.1}\\ -\Delta u_{t t}+\mu_{1} u_{t}(x, t)+\mu_{2} u_{t}(x, t-\tau) & \text { in } \Omega \times(0, \infty) \\ =b|u|^{p-2} u, & x \in \Omega, t \in(0, \tau) \\ u_{t}(x, t-\tau)=f_{0}(x, t-\tau), & x \in \Omega \\ u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), & x \in \partial \Omega, t \geq 0 \\ u(x, t)=0, & \end{cases}
$$

where $\Omega \subset R^{n}(n \geq 1)$ is a bounded domain with smooth boundary $\partial \Omega . \rho>0, p>m>2, \mu_{1}$, b are positive constants, μ_{2} is a real number, $\tau>0$ indicates the time delay, the term $\Delta_{m} u=$ $\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)$ is called m-Laplacian, g is the kernel function satisfies some conditions to be specified later. In a suitable function space, $\left(u_{0}, u_{1}, f_{0}\right)$ are the initial data.

Time delay appears in many practical problems such as economic phenomena, thermal, biological, chemical and physical [1].

Our aim is to consider a viscoelastic wave equation with m-Laplacian term ($\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)$) and delay term $\left(\mu_{2} u_{t}(x, t-\tau)\right)$.

In 1986, Datko et al. [2] indicated that delay is a source of instability. In 2006, Nicaise and Pignotti [3] looked into the wave equation with delay term as following

$$
\begin{equation*}
u_{t t}-\Delta u+\mu_{1} u_{t}(x, t)+\mu_{2} u_{t}(x, t-\tau)=0 \tag{1.2}
\end{equation*}
$$

Under the condition $0<\mu_{1}<\mu_{2}$, they proved the stability result.
In the absence of the m-Laplacian term $\left(\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)\right.$), the equation (1.1) becomes

$$
\begin{equation*}
\left|u_{t}\right|^{\rho} u_{t t}-\Delta u-\Delta u_{t t}+\int_{0}^{t} g(t-s) \Delta u(s) d s+\mu_{1} u_{t}(x, t)+\mu_{2} u_{t}(x, t-\tau)=b|u|^{p-2} u \tag{1.3}
\end{equation*}
$$

Wu [4], studied the equation (1.3) under suitable conditions. He established the blow up result in a finite time.

Liu [5], studied the following viscoelastic equation

$$
\begin{equation*}
\left|u_{t}\right|^{\rho} u_{t t}-\Delta u-\Delta u_{t t}+\int_{0}^{t} g(t-s) \Delta u(s) d s=b|u|^{p-2} u \tag{1.4}
\end{equation*}
$$

He proved the blow-up result. Also, the author obtained the decay results for the equation (1.4).
Recently, Kafini and Messaoudi [1], studied the following wave equation

$$
\begin{equation*}
u_{t t}-\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)+\mu_{1} u_{t}(x, t)+\mu_{2} u_{t}(x, t-\tau)=b|u|^{p-2} u \tag{1.5}
\end{equation*}
$$

with delay term. Under suitable conditions, they proved global nonexistence of the equation (1.5). Moreover, some other authors studied related problems (see [6, 7, 8, 9, 10, 11, 12, 13, 14]). Also, some other authors concerned the numerical analysis for some related problems (see [15, 16, 17]).

In this work, we get the blow-up result for positive initial energy. There is no research, to our best knowledge, related to viscoelastic wave equation with a varying material density $\left(\left|u_{t}\right|^{\rho}\right)$, mLaplacian term $\left(\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)\right)$ and delay term $\left(\mu_{2} u_{t}(x, t-\tau)\right)$, therefore, our paper improves the previous studies.

The outline of this paper is as follows: In Sect. 2, we give needed assumptions and lemmas. In Sect. 3, we get the blow-up results.

2 Preliminaries

In this part, for stating and proving our result, we give some material. We will use the Lebesgue $L^{p}(\Omega)$ and Sobolev $W_{0}^{m, p}(\Omega)$ spaces with their norms $\|\cdot\|_{p}$ and $\|\cdot\|_{W_{0}^{m, p}(\Omega)}$.
Lemma 2.1. $[18,19]$ Let $2 \leq p \leq \frac{2 n}{n-2}$, the inequality

$$
\|u\|_{p} \leq c_{s}\|\nabla u\|_{2} \text { for } u \in H_{0}^{1}(\Omega)
$$

holds with some positive constants c_{s}.
Suppose that

$$
\begin{equation*}
0<\rho \leq \frac{2}{n-2} \text { if } n \geq 3 \text { and } \rho>0 \text { if } n=1,2 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
m<p \leq \frac{m n}{n-m}, \text { if } n>m \text { and } p>m \text { if } n \leq m \tag{2.2}
\end{equation*}
$$

satisfy for ρ and p.
Related to $g(t)$ kernel function, we suppose that:
(A1) $g: R^{+} \rightarrow R^{+}$, and

$$
\begin{equation*}
g(0)>0, g^{\prime}(s) \leq 0 \text { and } 1-\int_{0}^{\infty} g(s) d s=l>0 \tag{2.3}
\end{equation*}
$$

satisfies.
Also, in [1], from Lemma 2.2 we get lemma as follows:

Lemma 2.2. Assume that (2.2) holds, such that

$$
\|u\|_{p}^{s} \leq C\left(\|\nabla u\|_{2}^{2}+\|\nabla u\|_{m}^{m}+\|u\|_{p}^{p}\right),
$$

where C is a positive constant, satisfies for any $u \in W_{0}^{1, m}(\Omega)$ and $m \leq s \leq p$.
Now we introduce, similar to the work of [20], the new function

$$
z(x, \kappa, t)=u_{t}(x, t-\tau \kappa) x \in \Omega, \kappa \in(0,1),
$$

which gives us

$$
\tau z_{t}(x, \kappa, t)+z_{\kappa}(x, \kappa, t)=0 \text { in } \Omega \times(0,1) \times(0, \infty) .
$$

Hence, problem (1.1) transformes to

$$
\begin{cases}\left|u_{t}\right|^{\rho} u_{t t}-\Delta u-\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)+\int_{0}^{t} g(t-s) \Delta u(s) d s & \\ -\Delta u_{t t}+\mu_{1} u_{t}(x, t)+\mu_{2} z(x, 1, t) & \text { in } \Omega \times(0, \infty), \\ =b|u|^{p-2} u, & x \in \Omega, \kappa \in(0, \\ \tau z_{t}(x, \kappa, t)+z_{\kappa}(x, \kappa, t)=0, & x \in \Omega, t>0, \tag{2.4}\\ z(x, 0, t)=u_{t}(x, t), & x \in \Omega, \\ z(x, \kappa, 0)=f_{0}(x,-\tau \kappa), & x \in \Omega, \\ u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), & x \in \partial \Omega, t \geq 0 . \\ u(x, t)=0, & \end{cases}
$$

Next, by combining the arguments [21, 22], we give the local existence theorem of problem (2.4).
Theorem 2.3. Assume that $\mu_{2}<\mu_{1}$, (A1), and (2.1)-(2.2) satisfy. Assume that $u_{0}, u_{1} \in W_{0}^{1, m}(\Omega)$ and $f_{0} \in L^{2}(\Omega \times(0,1))$. Hence, there exists a unique solution (u, z), for $T>0$, satisfies

$$
\begin{aligned}
u, u_{t} & \in C\left([0, T) ; W_{0}^{1, m}(\Omega)\right) \\
z & \in C\left([0, T) ; L^{2}(\Omega \times(0,1))\right)
\end{aligned}
$$

3 Blow-up

In this part, we get the blow-up result for positive initial energy. Firstly, we define the energy functional of the problem (2.4) as follows

$$
\begin{align*}
E(t)= & \frac{1}{\rho+2}\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\frac{1}{m}\|\nabla u\|_{m}^{m}+\frac{1}{2}\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|^{2}+\frac{1}{2}(g \circ \nabla u)(t) \\
& +\frac{1}{2}\left\|\nabla u_{t}\right\|^{2}+\frac{\xi}{2} \int_{\Omega} \int_{0}^{1} z^{2}(x, \kappa, t) d \kappa d x-\frac{b}{p}\|u\|_{p}^{p} \tag{3.1}
\end{align*}
$$

so that

$$
\begin{equation*}
\tau\left|\mu_{2}\right| \leq \xi \leq \tau\left(2 \mu_{1}-\left|\mu_{2}\right|\right) \tag{3.2}
\end{equation*}
$$

where ξ is a positive constant and

$$
(g \circ \nabla \nu)(t)=\int_{0}^{t} g(t-s)\|\nu(s)-\nu(t)\|_{2}^{2} d s
$$

To get the main result, we give the following assumption on g,

$$
\begin{equation*}
\int_{0}^{\infty} g(s) d s<\frac{1}{1+\frac{1}{\left(p(1-\beta)^{2}+2 \beta(1-\beta)\right)(p-2)}} \tag{3.3}
\end{equation*}
$$

where $0<\beta<1$ is a fixed number.
Lemma 3.1. $E(t)$ is a nonincreasing function, hence

$$
\begin{aligned}
E^{\prime}(t) & \leq-\alpha\left(\left\|u_{t}\right\|^{2}+\int_{\Omega} z^{2}(x, 1, t) d x\right)+\frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u\|^{2} \\
& \leq-\alpha\left(\left\|u_{t}\right\|^{2}+\int_{\Omega} z^{2}(x, 1, t) d x\right) \leq 0, \text { for } t \geq 0,
\end{aligned}
$$

where $\alpha=\min \left\{\mu_{1}-\frac{\xi}{2 \tau}-\frac{\left|\mu_{2}\right|}{2}, \frac{\xi}{2 \tau}-\frac{\left|\mu_{2}\right|}{2}\right\}$, which is positive by (3.2).
Proof. Multiplying the first equation in (2.4) by u_{t} and integrating over Ω and multiplying the second equation in (2.4) by $\frac{\xi}{\tau} z$ and integrating over $(0,1) \times \Omega$ with respect to κ and x and summing up, we obtain

$$
\begin{align*}
\frac{d}{d t} E(t) \leq & -\mu_{1}\left\|u_{t}\right\|^{2}+\frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u\|^{2}-\mu_{2} \int_{\Omega} u_{t} z(x, 1, t) d x \\
& -\frac{\xi}{\tau} \int_{\Omega} \int_{0}^{1} z z_{\kappa}(x, \kappa, t) d \kappa d x \tag{3.4}
\end{align*}
$$

Now, estimating the last two terms of the right-hand side of (3.4), respectively, we get:

$$
\begin{equation*}
\left|-\mu_{2} \int_{\Omega} u_{t} z(x, 1, t) d x\right| \leq \frac{\left|\mu_{2}\right|}{2}\left(\int_{\Omega} u_{t}^{2} d x+\int_{\Omega} z^{2}(x, 1, t) d x\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|-\frac{\xi}{\tau} \int_{\Omega} \int_{0}^{1} z z_{\kappa}(x, \kappa, t) d \kappa d x\right|=\frac{\zeta}{2 \tau}\left(\int_{\Omega} u_{t}^{2} d x-\int_{\Omega} z^{2}(x, 1, t) d x\right) \tag{3.6}
\end{equation*}
$$

Substituting (3.5)-(3.6) into (3.4) and from (A1), we get

$$
\begin{aligned}
\frac{d}{d t} E(t) & \leq-c_{1}\left\|u_{t}\right\|^{2}-c_{2} \int_{\Omega} z^{2}(x, 1, t) d x+\frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u\|^{2} \\
& \leq-\alpha\left(\left\|u_{t}\right\|^{2}+\int_{\Omega} z^{2}(x, 1, t) d x\right) \leq 0, \forall t \geq 0
\end{aligned}
$$

where $c_{1}=\mu_{1}-\frac{\zeta}{2 \tau}-\frac{\left|\mu_{2}\right|}{2}>0, c_{2}=\frac{\zeta}{2 \tau}-\frac{\left|\mu_{2}\right|}{2}>$ and $\alpha=\min \left\{c_{1}, c_{2}\right\}$. Hence, we completed the proof.
Q.E.D.

Now, by (3.1), (2.3) and Lemma 2.1, we get

$$
\begin{align*}
E(t) & \geq \frac{1}{2} l\|\nabla u\|^{2}+\frac{1}{2}(g \circ \nabla u)(t)-\frac{b B_{1}^{p}}{p}\left(l^{\frac{1}{2}}\|\nabla u\|_{2}\right)^{p} \\
& \geq F\left(\sqrt{l\|\nabla u\|_{2}^{2}+(g \circ \nabla u)(t)}\right), t \geq 0, \tag{3.7}
\end{align*}
$$

where $B_{1}=\frac{c_{s}^{p}}{l^{\frac{p}{2}}}$ and

$$
F(x)=\frac{1}{2} x^{2}-\frac{b B_{1}^{p}}{p} x^{p}, x>0
$$

Remark 3.2. Similar to [23], we know that, the functional F is increasing in $\left(0, \lambda_{1}\right)$, decreasing in $\left(\lambda_{1}, \infty\right)$, and F has a maximum at $\lambda_{1}=b^{-\frac{1}{p-2}} B_{1}^{-\frac{p}{p-2}}$ with the maximum value $E_{1}=F\left(\lambda_{1}\right)=$ $\frac{p-2}{2 p} b^{-\frac{2}{p-2}} B_{1}^{-\frac{2 p}{p-2}}=\frac{p-2}{2 p} \lambda_{1}^{2}$.
Lemma 3.3. [4] Assume that (2.1)-(2.2) and (A1) satisfy and suppose that $l\left\|\nabla u_{0}\right\|^{2}>\lambda_{1}^{2}$ and $E(0)<E_{1}$, then there exists $\lambda_{2}>\lambda_{1}$, so that

$$
\begin{equation*}
l\|\nabla u\|^{2}+(g \circ \nabla u)(t) \geq \lambda_{2}^{2} \tag{3.8}
\end{equation*}
$$

for all $t \in[0, T)$, and

$$
\begin{equation*}
\|u\|_{p}^{p} \geq \frac{b B_{1}^{p}}{p} \lambda_{2}^{p} \tag{3.9}
\end{equation*}
$$

Theorem 3.4. Let (2.1), (2.2), (3.2), (3.3) and (A1) hold. Assume that $u_{0}, u_{1} \in W_{0}^{1, m}(\Omega)$ with $l\left\|\nabla u_{0}\right\|^{2}>\lambda_{1}^{2}$ and $E(0)<\beta E_{1}$. Suppose further that $\rho<p-2$. Then, the solution of (2.4) blows up in finite time.
Proof. From contradiction, we assume that the solution of problem (2.4) is global, such that

$$
\begin{equation*}
\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|_{m}^{m}+\|u\|_{p}^{p}+\left\|\nabla u_{t}\right\|^{2}+\|\nabla u\|^{2} \leq K_{1}, \quad \forall t \geq 0 \tag{3.10}
\end{equation*}
$$

where $K_{1}>0$.
We set, $E_{2} \in\left(E(0), \beta E_{1}\right)$, such that

$$
H(t)=E_{2}-E(t)
$$

From lemma 3.1, (3.8) and $E_{1}=\frac{p-2}{2 p} \lambda_{1}^{2}$, we get

$$
\begin{equation*}
H(t) \geq H(0)=E_{2}-E(0)>0 \tag{3.11}
\end{equation*}
$$

and

$$
\begin{align*}
H(t) & \leq \beta E_{1}-\frac{1}{2}\left(l\|\nabla u\|^{2}+(g \circ \nabla u)(t)\right)+\frac{b}{p}\|u\|_{p}^{p} \\
& \leq E_{1}-\frac{1}{2} \lambda_{1}^{2}+\frac{b}{p}\|u\|_{p}^{p} \leq \frac{b}{p}\|u\|_{p}^{p} . \tag{3.12}
\end{align*}
$$

We define

$$
\begin{equation*}
L(t)=H^{1-\sigma}(t)+\frac{\varepsilon}{\rho+1} \int_{\Omega}\left|u_{t}\right|^{\rho} u_{t} u d x+\frac{\mu_{1} \varepsilon}{2} \int_{\Omega} u^{2} d x+\varepsilon \int_{\Omega} \nabla u_{t} \nabla u d x \tag{3.13}
\end{equation*}
$$

where $0<\varepsilon<1$ to be given later and

$$
\begin{equation*}
0<\sigma<\min \left\{\frac{p-2}{2 p}, \frac{1}{\rho+2}-\frac{1}{p}\right\} \tag{3.14}
\end{equation*}
$$

We take the derivative of (3.13) and use the first equation in (2.4), we obtain

$$
\begin{aligned}
L^{\prime}(t)= & (1-\sigma) H^{-\sigma}(t) H^{\prime}(t)+\frac{\varepsilon}{\rho+1} \int_{\Omega} u_{t}^{\rho+2} d x-\varepsilon\|\nabla u\|^{2}-\varepsilon\|\nabla u\|_{m}^{m} \\
& -\mu_{2} \varepsilon \int_{\Omega} u z(x, 1, t) d x+\varepsilon \int_{\Omega} \nabla u(t) \int_{0}^{t} g(t-s) \nabla u(s) d s d x \\
& +\varepsilon\left\|\nabla u_{t}\right\|^{2}+\varepsilon b\|u\|_{p}^{p} .
\end{aligned}
$$

Utilizing Young's and Hölder's inequalities, for $\delta, \eta>0$,

$$
\left|\mu_{2} \varepsilon \int_{\Omega} u z(x, 1, t) d x\right| \leq\left|\mu_{2}\right| \varepsilon\left(\delta \int_{\Omega} u^{2} d x+\frac{1}{4 \delta} \int_{\Omega} z^{2}(x, 1, t) d x\right)
$$

and

$$
\begin{aligned}
& \int_{\Omega} \nabla u(t) \cdot \int_{0}^{t} g(t-s) \nabla u(s) d s d x \\
= & \int_{\Omega} \int_{0}^{t} g(t-s) \nabla u(t) \cdot(\nabla u(s)-\nabla u(t)) d s d x+\int_{0}^{t} g(t-s) d s\|\nabla u(t)\|^{2} \\
\geq & -\eta(g \circ \nabla u)(t)+\left(1-\frac{1}{4 \eta}\right) \int_{0}^{t} g(s) d s\|\nabla u(t)\|^{2}
\end{aligned}
$$

Thus,

$$
\begin{align*}
L^{\prime}(t) \geq & (1-\sigma) H^{-\sigma}(t) H^{\prime}(t)+\frac{\varepsilon}{\rho+1} \int_{\Omega} u_{t}^{\rho+2} d x-\varepsilon\|\nabla u\|_{m}^{m}-\varepsilon \eta(g \circ \nabla u)(t) \\
& +\varepsilon\left(-1-\left(\frac{1}{4 \eta}-1\right) \int_{0}^{t} g(s) d s\right)\|\nabla u\|^{2}+\varepsilon\left\|\nabla u_{t}\right\|^{2} \\
& -\left|\mu_{2}\right| \varepsilon\left(\delta\|u\|^{2}+\frac{1}{4 \delta} \int_{\Omega} z^{2}(x, 1, t) d x\right)+\varepsilon b\|u\|_{p}^{p} \\
\geq & {\left[(1-\sigma) H^{-\sigma}(t)-\frac{\varepsilon\left|\mu_{2}\right|}{4 \delta \alpha}\right] H^{\prime}(t)+\frac{\varepsilon}{\rho+1} \int_{\Omega} u_{t}^{\rho+2} d x-\varepsilon\|\nabla u\|_{m}^{m} } \\
& +\varepsilon\left(-1-\left(\frac{1}{4 \eta}-1\right) \int_{0}^{t} g(s) d s\right)\|\nabla u\|^{2}-\varepsilon \eta(g \circ \nabla u)(t) \\
& -\left|\mu_{2}\right| \varepsilon \delta\|u\|^{2}+\varepsilon\left\|\nabla u_{t}\right\|^{2}+\varepsilon b\|u\|_{p}^{p}, \tag{3.15}
\end{align*}
$$

where $-\int_{\Omega} z^{2}(x, 1, t) d x \geq-\frac{1}{\alpha} H^{\prime}(t)$ holds by Lemma 3.1. (3.15) remains valid even if δ is time dependent since the integral is taken over the x-variable, hence, taking $\delta=\frac{\left|\mu_{2}\right|}{4 \alpha k} H^{\sigma}(t)$, for large k to be specified later, we have

$$
\begin{aligned}
L^{\prime}(t) \geq & (1-\sigma-\varepsilon k) H^{-\sigma}(t) H^{\prime}(t)+\frac{\varepsilon}{\rho+1} \int_{\Omega} u_{t}^{\rho+2} d x-\varepsilon\|\nabla u\|_{m}^{m} \\
& +\varepsilon\left(-1-\left(\frac{1}{4 \eta}-1\right) \int_{0}^{t} g(s) d s\right)\|\nabla u\|^{2}-\varepsilon \eta(g \circ \nabla u)(t) \\
& -\frac{\left|\mu_{2}\right|^{2} \varepsilon}{4 k \alpha} H^{\sigma}\|u\|^{2}+\varepsilon\left\|\nabla u_{t}\right\|^{2}+\varepsilon b\|u\|_{p}^{p} .
\end{aligned}
$$

Recalling the definition of $E(t)$ by (3.1) and adding $p\left(H(t)-E_{2}+E(t)\right)$, we arrive

$$
\begin{align*}
L^{\prime}(t) \geq & (1-\sigma-\varepsilon k) H^{-\sigma}(t) H^{\prime}(t)+\varepsilon\left(\frac{1}{\rho+1}+\frac{p}{\rho+2}\right) \int_{\Omega} u_{t}^{\rho+2} d x+\varepsilon\left(\frac{p}{m}-1\right)\|\nabla u\|_{m}^{m} \\
& +\varepsilon\left(\frac{p}{2}-\eta\right)(g \circ \nabla u)(t)+\varepsilon\left(\frac{p-2}{2}-\left(\frac{p-2}{2}+\frac{1}{4 \eta}\right) \int_{0}^{t} g(s) d s\right)\|\nabla u\|^{2} \\
& -\frac{\left|\mu_{2}\right|^{2} \varepsilon}{4 k \alpha} H^{\sigma}\|u\|^{2}+\varepsilon p H(t)+\frac{\varepsilon \xi p}{2} \int_{\Omega} \int_{0}^{1} z^{2}(x, \kappa, t) d \kappa d x-\varepsilon p E_{2} \\
& +\frac{(p+2) \varepsilon}{2}\left\|\nabla u_{t}\right\|^{2} \tag{3.16}
\end{align*}
$$

Now, taking η to satisfy

$$
\frac{1-l}{2(1-\beta) l(p-2)}<\eta<\frac{p(1-\beta)}{2}+\beta
$$

which derives from (3.3). Then, employing $l\|\nabla u\|^{2}+(g \circ \nabla u)(t) \geq \lambda_{2}^{2}$ from (3.8), to obtain

$$
\begin{aligned}
& \left(\frac{p-2}{2}-\left(\frac{p-2}{2}+\frac{1}{4 \eta}\right) \int_{0}^{t} g(s) d s\right)\|\nabla u\|^{2}+\left(\frac{p}{2}-\eta\right)(g \circ \nabla u)(t)-p E_{2} \\
\geq & \frac{\beta(p-2)}{2}\left(l\|\nabla u\|^{2}+(g \circ \nabla u)(t)\right)-p E_{2} \\
= & \frac{\beta(p-2)}{2} \frac{\lambda_{2}^{2}-\lambda_{1}^{2}}{\lambda_{2}^{2}}\left(l\|\nabla u\|^{2}+(g \circ \nabla u)(t)\right) \\
& +\frac{\beta(p-2)}{2} \frac{\lambda_{1}^{2}}{\lambda_{2}^{2}}\left(l\|\nabla u\|^{2}+(g \circ \nabla u)(t)\right)-p E_{2} \\
\geq & c_{3}\left(l\|\nabla u\|^{2}+(g \circ \nabla u)(t)\right)+c_{4},
\end{aligned}
$$

where $c_{3}=\frac{\beta(p-2)}{2} \frac{\lambda_{2}^{2}-\lambda_{1}^{2}}{\lambda_{2}^{2}}>0$ and $c_{4}=\frac{\beta(p-2)}{2} \lambda_{1}^{2}-p E_{2}$. Moreover, by $E_{2}<\beta E_{1}$ and $E_{1}=\frac{(p-2)}{2 p} \lambda_{1}^{2}$, we have

$$
c_{4}=\frac{\beta(p-2)}{2} \lambda_{1}^{2}-p E_{2}>\beta\left(\frac{(p-2) \lambda_{1}^{2}}{2}-p E_{1}\right)=0 .
$$

Thus, (3.16) becomes

$$
\begin{align*}
L^{\prime}(t) \geq & (1-\sigma-\varepsilon k) H^{-\sigma}(t) H^{\prime}(t)+\varepsilon\left(\frac{1}{\rho+1}+\frac{p}{\rho+2}\right) \int_{\Omega} u_{t}^{\rho+2} d x+\varepsilon\left(\frac{p}{m}-1\right)\|\nabla u\|_{m}^{m} \\
& +\varepsilon c_{3}\left(l\|\nabla u\|^{2}+(g \circ \nabla u)(t)\right)-\frac{\left|\mu_{2}\right|^{2} \varepsilon}{4 k \alpha} H^{\sigma}\|u\|^{2} \\
& +\frac{\varepsilon \xi p}{2} \int_{\Omega} \int_{0}^{1} z^{2}(x, \kappa, t) d \kappa d x+\frac{(p+2) \varepsilon}{2}\left\|\nabla u_{t}\right\|^{2}+p \varepsilon H(t) \tag{3.17}
\end{align*}
$$

By using (3.12), we arrive at $H^{\sigma}(t) \leq\left(\frac{b}{p}\right)^{\sigma}\|u\|_{p}^{\sigma p}$, hence

$$
\begin{equation*}
H^{\sigma}\|u\|_{2}^{2} \leq\left(\frac{b}{p}\right)^{\sigma}|\Omega|^{\frac{p-2}{p}}\|u\|_{p}^{2+\sigma p} \tag{3.18}
\end{equation*}
$$

Substituting (3.18) into (3.17), letting $a_{1}=\min \left\{c_{3}, \frac{p}{2}\right\}$, decomposing $\varepsilon p H(t)$ by

$$
\varepsilon p H(t)=\varepsilon\left(2 a_{1}+\left(p-2 a_{1}\right)\right) H(t),
$$

and from (2.3), we conclude that

$$
\begin{aligned}
L^{\prime}(t) \geq & (1-\sigma-\varepsilon k) H^{-\sigma}(t) H^{\prime}(t)+\varepsilon\left(\frac{1}{\rho+1}+\frac{p-2 a_{1}}{\rho+2}\right) \int_{\Omega} u_{t}^{\rho+2} d x \\
& +\varepsilon\left(\frac{p-2 a_{1}}{m}-1\right)\|\nabla u\|_{m}^{m}+\varepsilon\left(c_{3} l-a_{1} l\right)\|\nabla u\|^{2} \\
& +\varepsilon\left(c_{3}-a_{1}\right)(g \circ \nabla u)(t)+\varepsilon \frac{2 a_{1} b}{p}\|u\|_{p}^{p}-\frac{\left|\mu_{2}\right|^{2} \varepsilon}{4 k \alpha}\left(\frac{b}{p}\right)^{\sigma}|\Omega|^{\frac{p-2}{p}}\|u\|_{p}^{2+\sigma p} \\
& +\varepsilon \xi\left(\frac{p}{2}-a_{1}\right) \int_{\Omega} \int_{0}^{1} z^{2}(x, \kappa, t) d \kappa d x \\
& +\varepsilon\left(\frac{p+2}{2}-a_{1}\right)\left\|\nabla u_{t}\right\|^{2}+\varepsilon\left(p-2 a_{1}\right) H(t) .
\end{aligned}
$$

Then, for $2+\sigma p \leq p$, utilizing Lemma 2.2, we obtain

$$
\begin{align*}
L^{\prime}(t) \geq & (1-\sigma-\varepsilon k) H^{-\sigma}(t) H^{\prime}(t)+\varepsilon\left(\frac{1}{\rho+1}+\frac{p-2 a_{1}}{\rho+2}\right) \int_{\Omega} u_{t}^{\rho+2} d x \\
& +\varepsilon\left(\frac{p-2 a_{1}}{m}-1-\frac{C\left|\mu_{2}\right|^{2}}{4 k \alpha}\left(\frac{b}{p}\right)^{\sigma}|\Omega|^{\frac{p-2}{p}}\right)\|\nabla u\|_{m}^{m} \\
& +\varepsilon\left(c_{3} l-a_{1} l-\frac{C\left|\mu_{2}\right|^{2}}{4 k \alpha}\left(\frac{b}{p}\right)^{\sigma}|\Omega|^{\frac{p-2}{p}}\right)\|\nabla u\|^{2} \\
& +\varepsilon\left(c_{3}-a_{1}\right)(g \circ \nabla u)(t)+\varepsilon\left(\frac{2 a_{1} b}{p}-\frac{C\left|\mu_{2}\right|^{2}}{4 k \alpha}\left(\frac{b}{p}\right)^{\sigma}|\Omega|^{\frac{p-2}{p}}\right)\|u\|_{p}^{p} \\
& +\varepsilon\left(\frac{p+2}{2}-a_{1}\right)\left\|\nabla u_{t}\right\|^{2}+\varepsilon \xi\left(\frac{p}{2}-a_{1}\right) \int_{\Omega} \int_{0}^{1} z^{2}(x, \kappa, t) d \kappa d x \\
& +\varepsilon\left(p-2 a_{1}\right) H(t) . \tag{3.19}
\end{align*}
$$

Here, choosing the constant k large enough, such that

$$
c_{3} l-a_{1} l-\frac{C\left|\mu_{2}\right|^{2}}{4 k \alpha}\left(\frac{b}{p}\right)^{\sigma}|\Omega|^{\frac{p-2}{p}}>0, \frac{2 a_{1} b}{p}-\frac{C\left|\mu_{2}\right|^{2}}{4 k \alpha}\left(\frac{b}{p}\right)^{\sigma}|\Omega|^{\frac{p-2}{p}}>0
$$

and

$$
\frac{p-2 a_{1}}{m}-1-\frac{C\left|\mu_{2}\right|^{2}}{4 k \alpha}\left(\frac{b}{p}\right)^{\sigma}|\Omega|^{\frac{p-2}{p}}>0
$$

Choosing ε small enough, such that

$$
1-\sigma-\varepsilon k>0
$$

and

$$
\begin{equation*}
L(0)=H^{1-\sigma}(0)+\frac{\varepsilon}{\rho+1} \int_{\Omega}\left|u_{1}\right|^{\rho} u_{1} u_{0} d x+\frac{\mu_{1} \varepsilon}{2} \int_{\Omega} u_{0}^{2} d x+\varepsilon \int_{\Omega} \nabla u_{1} \cdot \nabla u_{0} d x>0 . \tag{3.20}
\end{equation*}
$$

Therefore, there exists $K>0$, such that

$$
\begin{align*}
L^{\prime}(t) \geq & \varepsilon K\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|^{2}+\|\nabla u\|_{m}^{m}+(g \circ \nabla u)(t)+\left\|\nabla u_{t}\right\|^{2}\right. \\
& \left.+H(t)+\|u\|_{p}^{p}+\int_{\Omega} \int_{0}^{1} z^{2}(x, \kappa, t) d \kappa d x\right) \tag{3.21}
\end{align*}
$$

which together with (3.20) implies that

$$
L(t) \geq L(0)>0, \text { for } t \geq 0
$$

Otherwise, utilizing Young's and Hölder's inequalities, we get

$$
\begin{align*}
\left.\left.\left|\int_{\Omega}\right| u_{t}\right|^{\rho} u_{t} u d x\right|^{\frac{1}{1-\sigma}} & \leq\left\|u_{t}\right\|_{\rho+2}^{\frac{\rho+1}{1-\sigma}}\|u\|_{\rho+2}^{\frac{1}{1-\sigma}} \leq c_{5}\left\|u_{t}\right\|_{\rho+2}^{\frac{\rho+1}{1-\sigma}}\|u\|_{\rho}^{\frac{1}{1-\sigma}} \\
& \leq c_{6}\left(\left\|u_{t}\right\|_{\rho+2}^{\frac{\rho+1}{1-\sigma} \mu}+\|u\|_{\rho}^{\frac{1}{1-\sigma} \theta}\right) \tag{3.22}
\end{align*}
$$

where $\frac{1}{\mu}+\frac{1}{\theta}=1$ and $c_{5}, c_{6}>0$. Choosing $\mu=\frac{(1-\sigma)(\rho+2)}{\rho+1}>1$, then from (3.14), we see that $\frac{\theta}{1-\sigma}=\frac{\rho+2}{(1-\sigma)(\rho+2)-(\rho+1)}<p$. Hence, from Lemma 2.2 and (3.22), we obtain

$$
\begin{equation*}
\left.\left.\left|\int_{\Omega}\right| u_{t}\right|^{\rho} u_{t} u d x\right|^{\frac{1}{1-\sigma}} \leq c_{7}\left(\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|_{m}^{m}+\|\nabla u\|^{2}+\|u\|_{p}^{p}\right), \tag{3.23}
\end{equation*}
$$

with $c_{7}>0$. In a similar way, as in deriving (3.22), we also get

$$
\begin{equation*}
\left|\int_{\Omega}\right| \nabla u_{t} \nabla u|d x|^{\frac{1}{1-\sigma}} \leq c_{8}\left(\left\|\nabla u_{t}\right\|^{2}+\|\nabla u\|_{2}^{\frac{2}{1-2 \sigma}}\right) \tag{3.24}
\end{equation*}
$$

for $c_{8}>0$. Combining (3.13), (3.23) and (3.24) to satisfy

$$
\begin{align*}
L(t)^{\frac{1}{1-\sigma}}= & \left(H^{1-\sigma}(t)+\frac{\varepsilon}{\rho+1} \int_{\Omega}\left|u_{t}\right|^{\rho} u_{t} u d x+\frac{\mu_{1} \varepsilon}{2}\|u\|^{2}+\varepsilon \int_{\Omega} \nabla u_{t} \nabla u d x\right)^{\frac{1}{1-\sigma}} \\
\leq & c_{9}\left(H(t)+\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|_{m}^{m}+\|u\|_{p}^{p}+\|\nabla u\|^{2}\right. \\
& \left.+\|u\|_{2}^{\frac{2}{1-\sigma}}+\|\nabla u\|_{2}^{\frac{2}{1-2 \sigma}}+\left\|\nabla u_{t}\right\|^{2}\right) \\
\leq & c_{10}\left(H(t)+\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|_{m}^{m}+\|u\|_{p}^{p}+\|\nabla u\|^{2}\right. \\
& \left.+\|u\|_{p}^{\frac{2}{1-\sigma}}+\|\nabla u\|_{2}^{\frac{2}{1-2 \sigma}}+\left\|\nabla u_{t}\right\|^{2}\right) \tag{3.25}
\end{align*}
$$

for $t \geq 0$ and $c_{9}, c_{10}>0$. By using (3.10) and (3.11), such that

$$
\begin{equation*}
\|\nabla u\|_{2}^{\frac{2}{1-2 \sigma}} \leq K_{1}^{\frac{2}{1-2 \sigma}} \leq K_{1}^{\frac{2}{1-2 \sigma}} \frac{H(t)}{H(0)} \text { and }\|u\|_{p}^{\frac{2}{1-\sigma}} \leq K_{1}^{\frac{2}{1-2 \sigma}} \frac{H(t)}{H(0)} \tag{3.26}
\end{equation*}
$$

From (3.25) and (3.26), we get

$$
\begin{equation*}
L(t)^{\frac{1}{1-\sigma}} \leq c_{11}\left(H(t)+\left\|u_{t}\right\|_{\rho+2}^{\rho+2}+\|\nabla u\|_{m}^{m}+\|u\|_{p}^{p}+\|\nabla u\|^{2}+\left\|\nabla u_{t}\right\|^{2}\right), t \geq 0 \tag{3.27}
\end{equation*}
$$

with $c_{11}>0$. Combining (3.27) with (3.21), we obtain

$$
\begin{equation*}
L^{\prime}(t) \geq c_{12} L(t)^{\frac{1}{1-\sigma}}, t \geq 0 \tag{3.28}
\end{equation*}
$$

here $c_{12}=\frac{\varepsilon K}{c_{11}}$. A simple integration of (3.28) over $(0, t)$, we have

$$
\begin{equation*}
L(t) \geq\left(L(0)^{-\frac{\sigma}{1-\sigma}}-\frac{\sigma c_{12}}{1-\sigma} t\right)^{-\frac{1-\sigma}{\sigma}} \tag{3.29}
\end{equation*}
$$

As we know, $L(0)>0,(3.29)$ indicates that L becomes infinite in a finite time T with $0<T \leq$ $\frac{1-\sigma}{c_{12} \sigma(0)^{1-\sigma}}$. As a result, we completed the proof.
Q.E.D.

Acknowledgement

The authors are grateful to DUBAP (ZGEF.20.009) for research funds.

References

[1] M. Kafini and S.A. Messaoudi, A blow-up result in a nonlinear wave equation with delay, Mediterranean Journal of Mathematics, 13 (2016), 237-247.
[2] R. Datko, J. Lagnese and M.P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM Journal on Control and Optimization, 24(1) (1986), 152-156.
[3] S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM Journal on Control and Optimization, 45(5) (2006), 1561-1585.
[4] S.T. Wu, Blow-up of solution for a viscoelastic wave equation with delay, Acta Mathematica Scientia, 39B(1) (2019), 329-338.
[5] W.J. Liu, General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source, Nonlinear Analysis, Theory, Methods \& Applications, 73 (2010), 1890-1904.
[6] M.M. Cavalcanti, V.N. Domingos Cavalcanti and J.A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equation with localized damping, Electronic Journal of Differential Equations, 44 (2002), 1-14.
[7] X. Han and M. Wang, Global existence and uniform decay for a non-linear viscoelastic equation with damping, Nonlinear Analysis, 70 (2009), 3090-3098.
[8] W.J. Liu, G. Li and L.H. Hong, General decay and blow-up of solutions for a system of viscoelastic equations of Kirchhoff type with strong damping, Journal of Function Spaces, 2014, (2014), 1-21, Article ID 284809.
[9] W.J. Liu and J. Yu, On decay and blow-up of the solution for a viscoelastic wave equation with boundary damping and source terms, Nonlinear Analysis, Theory, Methods \& Applications, 74(6) (2011), 2175-2190.
[10] W.J. Liu, Y. Sun and G. Li, On decay and blow-up of solutions for a singular nonlocal viscoelastic problem with a nonlinear source term, Topological Methods in Nonlinear Analysis, 49(1) (2017), 299-323.
[11] N. Mezouar and S. Boulaaras, Global existence and decay of solutions for a class of viscoelastic Kirchhoff equation, Bulletin of the Malaysian Mathematical Sciences Society, 43 (2020), 725755.
[12] N. Mezouar and S. Boulaaras, Global existence of solutions to a viscoelastic non-degenerate Kirchhoff equation, Applicable Analysis, 99(10) 2020, 1724-1748.
[13] M.I. Mustafa, General decay result for nonlinear viscoelastic equations, Journal Applied Mathematics, 457 (2018), 134-152.
[14] E. Pişkin and H. Yüksekkaya, Local existence and blow up of solutions for a logarithmic nonlinear viscoelastic wave equation with delay, Computational Methods for Differential Equations, 9(2) (2021), 623-636.
[15] R. Abazari, K. Yıldırım, Numerical study of Sivashinsky equation using a splitting scheme based on Crank-Nicolson method, Mathematical Methods in the Applied Sciences, 42 (2019), 5509-5521.
[16] M. Bayram, K. Yıldırım, Approximates method for solving an elasticity problem of settled of the elastic ground with variable coefficients, Applied Mathematics and Information Sciences, 7 (4) (2013), 1351-1357.
[17] K. Yıldırım, B. İbis, M. Bayram, New solutions of the nonlinear Fisher type equations by the reduced differential transform, Nonlinear Science Letters A, 3(1) (2012), 29-36.
[18] R.A. Adams, J.J.F. Fournier, Sobolev Spaces, Academic Press, 2003.
[19] E. Pişkin, Sobolev Spaces, Seçkin Publishing, 2017. (in Turkish)
[20] S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differential and Integral Equations, 21(9-10) (2008), 935-958.
[21] M. Kirane and S.H. Belkacem, Existence and asymptotic stability of a viscoelastic wave equation with a delay, Zeitschrift für angewandte Mathematik und Physik, 62 (2011), 1065-1082.
[22] S.T. Wu, Asymptotic behavior for a viscoelastic wave equation with a delay term, Taiwanese Journal of Mathematics, $\mathbf{1 7}$ (2013), 765-784.
[23] M.M. Cavalcanti, V.N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay of nonlinear viscoelastic equation with strong damping, Mathematical Methods in the Applied Sciences, 24 (2001), 1043-1053.

