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Abstract

In this work, we deal with the viscoelastic wave equation with m-Laplacian and delay terms.
We study blow-up of solutions for positive initial energy under suitable conditions.
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1 Introduction

In this part, we study the viscoelastic wave equation with m-Laplacian and delay terms

|ut|ρ utt −∆u− div
(
|∇u|m−2∇u

)
+
∫ t

0
g (t− s) ∆u (s) ds

−∆utt + µ1ut (x, t) + µ2ut (x, t− τ)

= b |u|p−2
u, in Ω× (0,∞) ,

ut (x, t− τ) = f0 (x, t− τ) , x ∈ Ω, t ∈ (0, τ) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(1.1)

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω. ρ > 0, p > m > 2, µ1,
b are positive constants, µ2 is a real number, τ > 0 indicates the time delay, the term ∆mu =

div
(
|∇u|m−2∇u

)
is called m-Laplacian, g is the kernel function satisfies some conditions to be

specified later. In a suitable function space, (u0, u1, f0) are the initial data.
Time delay appears in many practical problems such as economic phenomena, thermal, biolog-

ical, chemical and physical [1].

Our aim is to consider a viscoelastic wave equation with m-Laplacian term (div
(
|∇u|m−2∇u

)
)

and delay term (µ2ut (x, t− τ)).
In 1986, Datko et al. [2] indicated that delay is a source of instability. In 2006, Nicaise and

Pignotti [3] looked into the wave equation with delay term as following

utt −∆u+ µ1ut (x, t) + µ2ut (x, t− τ) = 0. (1.2)

Under the condition 0 < µ1 < µ2, they proved the stability result.

In the absence of the m-Laplacian term (div
(
|∇u|m−2∇u

)
), the equation (1.1) becomes

|ut|ρ utt −∆u−∆utt +

∫ t

0

g (t− s) ∆u (s) ds+ µ1ut (x, t) + µ2ut (x, t− τ) = b |u|p−2
u. (1.3)
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Wu [4], studied the equation (1.3) under suitable conditions. He established the blow up result in
a finite time.

Liu [5], studied the following viscoelastic equation

|ut|ρ utt −∆u−∆utt +

∫ t

0

g (t− s) ∆u (s) ds = b |u|p−2
u. (1.4)

He proved the blow-up result. Also, the author obtained the decay results for the equation (1.4).
Recently, Kafini and Messaoudi [1], studied the following wave equation

utt − div
(
|∇u|m−2∇u

)
+ µ1ut (x, t) + µ2ut (x, t− τ) = b |u|p−2

u, (1.5)

with delay term. Under suitable conditions, they proved global nonexistence of the equation (1.5).
Moreover, some other authors studied related problems (see [6, 7, 8, 9, 10, 11, 12, 13, 14]). Also,
some other authors concerned the numerical analysis for some related problems (see [15, 16, 17]).

In this work, we get the blow-up result for positive initial energy. There is no research, to our
best knowledge, related to viscoelastic wave equation with a varying material density (|ut|ρ), m-

Laplacian term (div
(
|∇u|m−2∇u

)
) and delay term (µ2ut (x, t− τ)), therefore, our paper improves

the previous studies.
The outline of this paper is as follows: In Sect. 2, we give needed assumptions and lemmas. In

Sect. 3, we get the blow-up results.

2 Preliminaries

In this part, for stating and proving our result, we give some material. We will use the Lebesgue
Lp (Ω) and Sobolev Wm,p

0 (Ω) spaces with their norms ‖·‖p and ‖·‖Wm,p
0 (Ω).

Lemma 2.1. [18, 19] Let 2 ≤ p ≤ 2n
n−2 , the inequality

‖u‖p ≤ cs ‖∇u‖2 for u ∈ H1
0 (Ω) ,

holds with some positive constants cs.

Suppose that

0 < ρ ≤ 2

n− 2
if n ≥ 3 and ρ > 0 if n = 1, 2, (2.1)

and
m < p ≤ mn

n−m
, if n > m and p > m if n ≤ m, (2.2)

satisfy for ρ and p.
Related to g (t) kernel function, we suppose that:
(A1) g : R+ → R+, and

g (0) > 0, g′ (s) ≤ 0 and 1−
∫ ∞

0

g (s) ds = l > 0, (2.3)

satisfies.
Also, in [1], from Lemma 2.2 we get lemma as follows:



Blow-up of solutions for a viscoelastic wave equation with m-Laplacian and delay terms 23

Lemma 2.2. Assume that (2.2) holds, such that

‖u‖sp ≤ C
(
‖∇u‖22 + ‖∇u‖mm + ‖u‖pp

)
,

where C is a positive constant, satisfies for any u ∈W 1,m
0 (Ω) and m ≤ s ≤ p.

Now we introduce, similar to the work of [20], the new function

z (x, κ, t) = ut (x, t− τκ) x ∈ Ω, κ ∈ (0, 1) ,

which gives us
τzt (x, κ, t) + zκ (x, κ, t) = 0 in Ω× (0, 1)× (0,∞) .

Hence, problem (1.1) transformes to

|ut|ρ utt −∆u− div
(
|∇u|m−2∇u

)
+
∫ t

0
g (t− s) ∆u (s) ds

−∆utt + µ1ut (x, t) + µ2z (x, 1, t)

= b |u|p−2
u, in Ω× (0,∞) ,

τzt (x, κ, t) + zκ (x, κ, t) = 0, x ∈ Ω, κ ∈ (0, 1) , t > 0,
z (x, 0, t) = ut (x, t) , x ∈ Ω, t > 0,
z (x, κ, 0) = f0 (x,−τκ) , x ∈ Ω,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = 0, x ∈ ∂Ω, t ≥ 0.

(2.4)

Next, by combining the arguments [21, 22], we give the local existence theorem of problem (2.4).

Theorem 2.3. Assume that µ2 < µ1, (A1), and (2.1)-(2.2) satisfy. Assume that u0, u1 ∈W 1,m
0 (Ω)

and f0 ∈ L2 (Ω× (0, 1)). Hence, there exists a unique solution (u, z), for T > 0, satisfies

u, ut ∈ C
(

[0, T ) ;W 1,m
0 (Ω)

)
,

z ∈ C
(
[0, T ) ;L2 (Ω× (0, 1))

)
.

3 Blow-up

In this part, we get the blow-up result for positive initial energy. Firstly, we define the energy
functional of the problem (2.4) as follows

E (t) =
1

ρ+ 2
‖ut‖ρ+2

ρ+2 +
1

m
‖∇u‖mm +

1

2

(
1−

∫ t

0

g (s) ds

)
‖∇u‖2 +

1

2
(g ◦ ∇u) (t)

+
1

2
‖∇ut‖2 +

ξ

2

∫
Ω

∫ 1

0

z2 (x, κ, t) dκdx− b

p
‖u‖pp , (3.1)

so that
τ |µ2| ≤ ξ ≤ τ (2µ1 − |µ2|) , (3.2)

where ξ is a positive constant and

(g ◦ ∇ν) (t) =

∫ t

0

g (t− s) ‖ν (s)− ν (t)‖22 ds.
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To get the main result, we give the following assumption on g,∫ ∞
0

g (s) ds <
1

1 + 1

(p(1−β)2+2β(1−β))(p−2)

, (3.3)

where 0 < β < 1 is a fixed number.

Lemma 3.1. E (t) is a nonincreasing function, hence

E′ (t) ≤ −α
(
‖ut‖2 +

∫
Ω

z2 (x, 1, t) dx

)
+

1

2
(g′ ◦ ∇u) (t)− 1

2
g (t) ‖∇u‖2

≤ −α
(
‖ut‖2 +

∫
Ω

z2 (x, 1, t) dx

)
≤ 0, for t ≥ 0,

where α = min
{
µ1 − ξ

2τ −
|µ2|

2 , ξ
2τ −

|µ2|
2

}
, which is positive by (3.2).

Proof. Multiplying the first equation in (2.4) by ut and integrating over Ω and multiplying the
second equation in (2.4) by ξ

τ z and integrating over (0, 1)×Ω with respect to κ and x and summing
up, we obtain

d

dt
E (t) ≤ −µ1 ‖ut‖2 +

1

2
(g′ ◦ ∇u) (t)− 1

2
g (t) ‖∇u‖2 − µ2

∫
Ω

utz (x, 1, t) dx

− ξ
τ

∫
Ω

∫ 1

0

zzκ (x, κ, t) dκdx. (3.4)

Now, estimating the last two terms of the right-hand side of (3.4), respectively, we get:∣∣∣∣−µ2

∫
Ω

utz (x, 1, t) dx

∣∣∣∣ ≤ |µ2|
2

(∫
Ω

u2
tdx+

∫
Ω

z2 (x, 1, t) dx

)
(3.5)

and ∣∣∣∣− ξτ
∫

Ω

∫ 1

0

zzκ (x, κ, t) dκdx

∣∣∣∣ =
ζ

2τ

(∫
Ω

u2
tdx−

∫
Ω

z2 (x, 1, t) dx

)
. (3.6)

Substituting (3.5)-(3.6) into (3.4) and from (A1), we get

d

dt
E (t) ≤ −c1 ‖ut‖2 − c2

∫
Ω

z2 (x, 1, t) dx+
1

2
(g′ ◦ ∇u) (t)− 1

2
g (t) ‖∇u‖2

≤ −α
(
‖ut‖2 +

∫
Ω

z2 (x, 1, t) dx

)
≤ 0, ∀t ≥ 0,

where c1 = µ1 − ζ
2τ −

|µ2|
2 > 0, c2 = ζ

2τ −
|µ2|

2 > and α = min {c1, c2}. Hence, we completed the
proof. q.e.d.

Now, by (3.1), (2.3) and Lemma 2.1, we get

E (t) ≥ 1

2
l ‖∇u‖2 +

1

2
(g ◦ ∇u) (t)− bBp1

p

(
l
1
2 ‖∇u‖2

)p
≥ F

(√
l ‖∇u‖22 + (g ◦ ∇u) (t)

)
, t ≥ 0, (3.7)
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where B1 =
cps

l
p
2

and

F (x) =
1

2
x2 − bBp1

p
xp, x > 0.

Remark 3.2. Similar to [23], we know that, the functional F is increasing in (0, λ1), decreasing

in (λ1,∞), and F has a maximum at λ1 = b−
1
p−2B

− p
p−2

1 with the maximum value E1 = F (λ1) =
p−2
2p b

− 2
p−2B

− 2p
p−2

1 = p−2
2p λ

2
1.

Lemma 3.3. [4] Assume that (2.1)-(2.2) and (A1) satisfy and suppose that l ‖∇u0‖2 > λ2
1 and

E (0) < E1, then there exists λ2 > λ1, so that

l ‖∇u‖2 + (g ◦ ∇u) (t) ≥ λ2
2, (3.8)

for all t ∈ [0, T ), and

‖u‖pp ≥
bBp1
p
λp2. (3.9)

Theorem 3.4. Let (2.1), (2.2), (3.2), (3.3) and (A1) hold. Assume that u0, u1 ∈ W 1,m
0 (Ω) with

l ‖∇u0‖2 > λ2
1 and E (0) < βE1. Suppose further that ρ < p− 2. Then, the solution of (2.4) blows

up in finite time.

Proof. From contradiction, we assume that the solution of problem (2.4) is global, such that

‖ut‖ρ+2
ρ+2 + ‖∇u‖mm + ‖u‖pp + ‖∇ut‖2 + ‖∇u‖2 ≤ K1, ∀t ≥ 0, (3.10)

where K1 > 0.
We set, E2 ∈ (E (0) , βE1), such that

H (t) = E2 − E (t) .

From lemma 3.1, (3.8) and E1 = p−2
2p λ

2
1, we get

H (t) ≥ H (0) = E2 − E (0) > 0 (3.11)

and

H (t) ≤ βE1 −
1

2

(
l ‖∇u‖2 + (g ◦ ∇u) (t)

)
+
b

p
‖u‖pp

≤ E1 −
1

2
λ2

1 +
b

p
‖u‖pp ≤

b

p
‖u‖pp . (3.12)

We define

L (t) = H1−σ (t) +
ε

ρ+ 1

∫
Ω

|ut|ρ utudx+
µ1ε

2

∫
Ω

u2dx+ ε

∫
Ω

∇ut∇udx, (3.13)

where 0 < ε < 1 to be given later and

0 < σ < min

{
p− 2

2p
,

1

ρ+ 2
− 1

p

}
. (3.14)
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We take the derivative of (3.13) and use the first equation in (2.4), we obtain

L′ (t) = (1− σ)H−σ (t)H ′ (t) +
ε

ρ+ 1

∫
Ω

uρ+2
t dx− ε ‖∇u‖2 − ε ‖∇u‖mm

−µ2ε

∫
Ω

uz (x, 1, t) dx+ ε

∫
Ω

∇u (t)

∫ t

0

g (t− s)∇u (s) dsdx

+ε ‖∇ut‖2 + εb ‖u‖pp .

Utilizing Young’s and Hölder’s inequalities, for δ, η > 0,∣∣∣∣µ2ε

∫
Ω

uz (x, 1, t) dx

∣∣∣∣ ≤ |µ2| ε
(
δ

∫
Ω

u2dx+
1

4δ

∫
Ω

z2 (x, 1, t) dx

)
and ∫

Ω

∇u (t) ·
∫ t

0

g (t− s)∇u (s) dsdx

=

∫
Ω

∫ t

0

g (t− s)∇u (t) · (∇u (s)−∇u (t)) dsdx+

∫ t

0

g (t− s) ds ‖∇u (t)‖2

≥ −η (g ◦ ∇u) (t) +

(
1− 1

4η

)∫ t

0

g (s) ds ‖∇u (t)‖2 .

Thus,

L′ (t) ≥ (1− σ)H−σ (t)H ′ (t) +
ε

ρ+ 1

∫
Ω

uρ+2
t dx− ε ‖∇u‖mm − εη (g ◦ ∇u) (t)

+ε

(
−1−

(
1

4η
− 1

)∫ t

0

g (s) ds

)
‖∇u‖2 + ε ‖∇ut‖2

− |µ2| ε
(
δ ‖u‖2 +

1

4δ

∫
Ω

z2 (x, 1, t) dx

)
+ εb ‖u‖pp

≥
[
(1− σ)H−σ (t)− ε |µ2|

4δα

]
H ′ (t) +

ε

ρ+ 1

∫
Ω

uρ+2
t dx− ε ‖∇u‖mm

+ε

(
−1−

(
1

4η
− 1

)∫ t

0

g (s) ds

)
‖∇u‖2 − εη (g ◦ ∇u) (t)

− |µ2| εδ ‖u‖2 + ε ‖∇ut‖2 + εb ‖u‖pp , (3.15)

where −
∫

Ω
z2 (x, 1, t) dx ≥ − 1

αH
′ (t) holds by Lemma 3.1. (3.15) remains valid even if δ is time

dependent since the integral is taken over the x-variable, hence, taking δ = |µ2|
4αkH

σ (t), for large k
to be specified later, we have

L′ (t) ≥ (1− σ − εk)H−σ (t)H ′ (t) +
ε

ρ+ 1

∫
Ω

uρ+2
t dx− ε ‖∇u‖mm

+ε

(
−1−

(
1

4η
− 1

)∫ t

0

g (s) ds

)
‖∇u‖2 − εη (g ◦ ∇u) (t)

−|µ2|2 ε
4kα

Hσ ‖u‖2 + ε ‖∇ut‖2 + εb ‖u‖pp .
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Recalling the definition of E (t) by (3.1) and adding p (H (t)− E2 + E (t)), we arrive

L′ (t) ≥ (1− σ − εk)H−σ (t)H ′ (t) + ε

(
1

ρ+ 1
+

p

ρ+ 2

)∫
Ω

uρ+2
t dx+ ε

( p
m
− 1
)
‖∇u‖mm

+ε
(p

2
− η
)

(g ◦ ∇u) (t) + ε

(
p− 2

2
−
(
p− 2

2
+

1

4η

)∫ t

0

g (s) ds

)
‖∇u‖2

−|µ2|2 ε
4kα

Hσ ‖u‖2 + εpH (t) +
εξp

2

∫
Ω

∫ 1

0

z2 (x, κ, t) dκdx− εpE2

+
(p+ 2) ε

2
‖∇ut‖2 . (3.16)

Now, taking η to satisfy
1− l

2 (1− β) l (p− 2)
< η <

p (1− β)

2
+ β,

which derives from (3.3). Then, employing l ‖∇u‖2 + (g ◦ ∇u) (t) ≥ λ2
2 from (3.8), to obtain(

p− 2

2
−
(
p− 2

2
+

1

4η

)∫ t

0

g (s) ds

)
‖∇u‖2 +

(p
2
− η
)

(g ◦ ∇u) (t)− pE2

≥ β (p− 2)

2

(
l ‖∇u‖2 + (g ◦ ∇u) (t)

)
− pE2

=
β (p− 2)

2

λ2
2 − λ2

1

λ2
2

(
l ‖∇u‖2 + (g ◦ ∇u) (t)

)
+
β (p− 2)

2

λ2
1

λ2
2

(
l ‖∇u‖2 + (g ◦ ∇u) (t)

)
− pE2

≥ c3

(
l ‖∇u‖2 + (g ◦ ∇u) (t)

)
+ c4,

where c3 = β(p−2)
2

λ2
2−λ

2
1

λ2
2

> 0 and c4 = β(p−2)
2 λ2

1 − pE2. Moreover, by E2 < βE1 and E1 = (p−2)
2p λ2

1,

we have

c4 =
β (p− 2)

2
λ2

1 − pE2 > β

(
(p− 2)λ2

1

2
− pE1

)
= 0.

Thus, (3.16) becomes

L′ (t) ≥ (1− σ − εk)H−σ (t)H ′ (t) + ε

(
1

ρ+ 1
+

p

ρ+ 2

)∫
Ω

uρ+2
t dx+ ε

( p
m
− 1
)
‖∇u‖mm

+εc3

(
l ‖∇u‖2 + (g ◦ ∇u) (t)

)
− |µ2|2 ε

4kα
Hσ ‖u‖2

+
εξp

2

∫
Ω

∫ 1

0

z2 (x, κ, t) dκdx+
(p+ 2) ε

2
‖∇ut‖2 + pεH (t) . (3.17)

By using (3.12), we arrive at Hσ (t) ≤
(
b
p

)σ
‖u‖σpp , hence

Hσ ‖u‖22 ≤
(
b

p

)σ
|Ω|

p−2
p ‖u‖2+σp

p . (3.18)
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Substituting (3.18) into (3.17), letting a1 = min
{
c3,

p
2

}
, decomposing εpH (t) by

εpH (t) = ε (2a1 + (p− 2a1))H (t) ,

and from (2.3), we conclude that

L′ (t) ≥ (1− σ − εk)H−σ (t)H ′ (t) + ε

(
1

ρ+ 1
+
p− 2a1

ρ+ 2

)∫
Ω

uρ+2
t dx

+ε

(
p− 2a1

m
− 1

)
‖∇u‖mm + ε (c3l − a1l) ‖∇u‖2

+ε (c3 − a1) (g ◦ ∇u) (t) + ε
2a1b

p
‖u‖pp −

|µ2|2 ε
4kα

(
b

p

)σ
|Ω|

p−2
p ‖u‖2+σp

p

+εξ
(p

2
− a1

)∫
Ω

∫ 1

0

z2 (x, κ, t) dκdx

+ε

(
p+ 2

2
− a1

)
‖∇ut‖2 + ε (p− 2a1)H (t) .

Then, for 2 + σp ≤ p, utilizing Lemma 2.2, we obtain

L′ (t) ≥ (1− σ − εk)H−σ (t)H ′ (t) + ε

(
1

ρ+ 1
+
p− 2a1

ρ+ 2

)∫
Ω

uρ+2
t dx

+ε

(
p− 2a1

m
− 1− C |µ2|2

4kα

(
b

p

)σ
|Ω|

p−2
p

)
‖∇u‖mm

+ε

(
c3l − a1l −

C |µ2|2

4kα

(
b

p

)σ
|Ω|

p−2
p

)
‖∇u‖2

+ε (c3 − a1) (g ◦ ∇u) (t) + ε

(
2a1b

p
− C |µ2|2

4kα

(
b

p

)σ
|Ω|

p−2
p

)
‖u‖pp

+ε

(
p+ 2

2
− a1

)
‖∇ut‖2 + εξ

(p
2
− a1

)∫
Ω

∫ 1

0

z2 (x, κ, t) dκdx

+ε (p− 2a1)H (t) . (3.19)

Here, choosing the constant k large enough, such that

c3l − a1l −
C |µ2|2

4kα

(
b

p

)σ
|Ω|

p−2
p > 0,

2a1b

p
− C |µ2|2

4kα

(
b

p

)σ
|Ω|

p−2
p > 0

and
p− 2a1

m
− 1− C |µ2|2

4kα

(
b

p

)σ
|Ω|

p−2
p > 0.

Choosing ε small enough, such that

1− σ − εk > 0
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and

L (0) = H1−σ (0) +
ε

ρ+ 1

∫
Ω

|u1|ρ u1u0dx+
µ1ε

2

∫
Ω

u2
0dx+ ε

∫
Ω

∇u1 · ∇u0dx > 0. (3.20)

Therefore, there exists K > 0, such that

L′ (t) ≥ εK
(
‖ut‖ρ+2

ρ+2 + ‖∇u‖2 + ‖∇u‖mm + (g ◦ ∇u) (t) + ‖∇ut‖2

+H (t) + ‖u‖pp +

∫
Ω

∫ 1

0

z2 (x, κ, t) dκdx

)
, (3.21)

which together with (3.20) implies that

L (t) ≥ L (0) > 0, for t ≥ 0.

Otherwise, utilizing Young’s and Hölder’s inequalities, we get∣∣∣∣∫
Ω

|ut|ρ utudx
∣∣∣∣ 1
1−σ

≤ ‖ut‖
ρ+1
1−σ
ρ+2 ‖u‖

1
1−σ
ρ+2 ≤ c5 ‖ut‖

ρ+1
1−σ
ρ+2 ‖u‖

1
1−σ
ρ

≤ c6

(
‖ut‖

ρ+1
1−σµ

ρ+2 + ‖u‖
1

1−σ θ
ρ

)
, (3.22)

where 1
µ + 1

θ = 1 and c5, c6 > 0. Choosing µ = (1−σ)(ρ+2)
ρ+1 > 1, then from (3.14), we see that

θ
1−σ = ρ+2

(1−σ)(ρ+2)−(ρ+1) < p. Hence, from Lemma 2.2 and (3.22), we obtain

∣∣∣∣∫
Ω

|ut|ρ utudx
∣∣∣∣ 1
1−σ

≤ c7
(
‖ut‖ρ+2

ρ+2 + ‖∇u‖mm + ‖∇u‖2 + ‖u‖pp
)

, (3.23)

with c7 > 0. In a similar way, as in deriving (3.22), we also get∣∣∣∣∫
Ω

|∇ut∇u| dx
∣∣∣∣ 1
1−σ

≤ c8
(
‖∇ut‖2 + ‖∇u‖

2
1−2σ

2

)
, (3.24)

for c8 > 0. Combining (3.13), (3.23) and (3.24) to satisfy

L (t)
1

1−σ =

(
H1−σ (t) +

ε

ρ+ 1

∫
Ω

|ut|ρ utudx+
µ1ε

2
‖u‖2 + ε

∫
Ω

∇ut∇udx
) 1

1−σ

≤ c9

(
H (t) + ‖ut‖ρ+2

ρ+2 + ‖∇u‖mm + ‖u‖pp + ‖∇u‖2

+ ‖u‖
2

1−σ
2 + ‖∇u‖

2
1−2σ

2 + ‖∇ut‖2
)

≤ c10

(
H (t) + ‖ut‖ρ+2

ρ+2 + ‖∇u‖mm + ‖u‖pp + ‖∇u‖2

+ ‖u‖
2

1−σ
p + ‖∇u‖

2
1−2σ

2 + ‖∇ut‖2
)

, (3.25)
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for t ≥ 0 and c9, c10 > 0. By using (3.10) and (3.11), such that

‖∇u‖
2

1−2σ

2 ≤ K
2

1−2σ

1 ≤ K
2

1−2σ

1

H (t)

H (0)
and ‖u‖

2
1−σ
p ≤ K

2
1−2σ

1

H (t)

H (0)
. (3.26)

From (3.25) and (3.26), we get

L (t)
1

1−σ ≤ c11

(
H (t) + ‖ut‖ρ+2

ρ+2 + ‖∇u‖mm + ‖u‖pp + ‖∇u‖2 + ‖∇ut‖2
)
, t ≥ 0, (3.27)

with c11 > 0. Combining (3.27) with (3.21), we obtain

L′ (t) ≥ c12L (t)
1

1−σ , t ≥ 0, (3.28)

here c12 = εK
c11

. A simple integration of (3.28) over (0, t), we have

L (t) ≥
(
L (0)

− σ
1−σ − σc12

1− σ
t

)− 1−σ
σ

. (3.29)

As we know, L (0) > 0, (3.29) indicates that L becomes infinite in a finite time T with 0 < T ≤
1−σ

c12σL(0)
σ

1−σ
. As a result, we completed the proof. q.e.d.
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